Random walks on the hypergroup of circles in a finite field

نویسنده

  • Le Anh Vinh
چکیده

In this paper we study random walks on the hypergroup of circles in a finite field of prime order p = 4l+ 3. We investigate the behavior of random walks on this hypergroup, the equilibrium distribution and the mixing times. We use two different approaches—comparison of Dirichlet Forms (geometric bound of eigenvalues), and coupling methods, to show that the mixing time of random walks on hypergroup of circles is only linear.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random walks on hypergroup of conics in finite fields

In this paper we study random walks on the hypergroup of conics in finite fields. We investigate the behavior of random walks on this hypergroup, the equilibrium distribution and the mixing times. We use the coupling method to show that the mixing time of random walks on hypergroup of conics is only linear. Mathematics Subject Classifications: 60D05, 11A99. Keywoords: random walks, hypergroups,...

متن کامل

Hypergroups derived from random walks on some infinite graphs

Wildberger gave a method to construct a finite hermitian discrete hypergroup from a random walk on a certain kind of finite graphs. In this article, we reveal that his method is applicable to a random walk on a certain kind of infinite graphs. Moreover, we make some observations of finite or infinite graphs on which a random walk produces a hermitian discrete hypergroup.

متن کامل

SU(d)-biinvariant random walks on SL(d,C) and their Euclidean counterparts

Motivated by recent results of A. Klyachko, we construct a probability preserving, isometric isomorphism from the Banach algebra Mb(SL(d,C)‖SU(d)) of all SU(d)-biinvariant bounded signed measures on SL(d,C) to some Banach subalgebra of the Banach algebra of all bounded signed measures on the Euclidean space of all Hermitian d × d-matrices with trace 0. This isomorphism leads to strong limit the...

متن کامل

Bessel convolutions on matrix cones: Algebraic properties and random walks

Bessel-type convolution algebras of bounded Borel measures on the matrix cones of positive semidefinite q×q-matrices over R,C,H were introduced recently by Rösler. These convolutions depend on some continuous parameter, generate commutative hypergroup structures and have Bessel functions of matrix argument as characters. Here, we first study the rich algebraic structure of these hypergroups. In...

متن کامل

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008